Skip to main content

std::static_pointer_cast, std::dynamic_pointer_cast, std::const_pointer_cast, std::reinterpret_pointer_cast

Defined in header <memory>.

Declarations

// 1)
template< class T, class U >
std::shared_ptr<T> static_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 2)
template< class T, class U >
std::shared_ptr<T> static_pointer_cast( std::shared_ptr<U>&& r ) noexcept;
// 3)
template< class T, class U >
std::shared_ptr<T> dynamic_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 4)
template< class T, class U >
std::shared_ptr<T> dynamic_pointer_cast( std::shared_ptr<U>&& r ) noexcept;
// 5)
template< class T, class U >
std::shared_ptr<T> const_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 6)
template< class T, class U >
std::shared_ptr<T> const_pointer_cast( std::shared_ptr<U>&& r ) noexcept;
// 7)
template< class T, class U >
std::shared_ptr<T> reinterpret_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 8)
template< class T, class U >
std::shared_ptr<T> reinterpret_pointer_cast( std::shared_ptr<U>&& r ) noexcept;

Creates a new instance of std::shared_ptr whose stored pointer is obtained from r's stored pointer using a cast expression.

If r is empty, so is the new shared_ptr (but its stored pointer is not necessarily null). Otherwise, the new shared_ptr will share ownership with the initial value of r, except that it is empty if the dynamic_cast performed by dynamic_pointer_cast returns a null pointer.

Let Y be typename std::shared_ptr<T>::element_type, then the resulting std::shared_ptr's stored pointer will be obtained by evaluating, respectively:

1-2) static_cast<Y*>(r.get())
3-4) dynamic_cast<Y*>(r.get()) (If the result of the dynamic_cast is a null pointer value, the returned shared_ptr will be empty.)
5-6) const_cast<Y*>(r.get())
7-8) reinterpret_cast<Y*>(r.get())

The behavior of these functions is undefined unless the corresponding cast from U* to T* is well formed:

1-2) The behavior is undefined unless static_cast<T*>((U*)nullptr) is well formed.
3-4) The behavior is undefined unless dynamic_cast<T*>((U*)nullptr) is well formed.
5-6) The behavior is undefined unless const_cast<T*>((U*)nullptr) is well formed.
7-8) The behavior is undefined unless reinterpret_cast<T*>((U*)nullptr) is well formed.

After calling the rvalue overloads (2,4,6,8), r is empty and r.get() == nullptr, except that r is not modified for dynamic_pointer_cast (4) if the dynamic_cast fails (Since C++20).

Parameters

r - pointer to convert

Notes

The expressions std::shared_ptr<T>(static_cast<T*>(r.get())), std::shared_ptr<T>(dynamic_cast<T*>(r.get()))
and std::shared_ptr<T>(const_cast<T*>(r.get())) might seem to have the same effect, but they all will likely result in undefined behavior, attempting to delete the same object twice!

Possible implementation

static_pointer_cast

    template< class T, class U >
std::shared_ptr<T> static_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
auto p = static_cast<typename std::shared_ptr<T>::element_type*>(r.get());
return std::shared_ptr<T>{r, p};
}

dynamic_pointer_cast

template< class T, class U >
std::shared_ptr<T> dynamic_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
if (auto p = dynamic_cast<typename std::shared_ptr<T>::element_type*>(r.get()))
return std::shared_ptr<T>{r, p};
else
return std::shared_ptr<T>{};
}

const_pointer_cast

template< class T, class U >
std::shared_ptr<T> const_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
auto p = const_cast<typename std::shared_ptr<T>::element_type*>(r.get());
return std::shared_ptr<T>{r, p};
}

reinterpret_pointer_cast

template< class T, class U >
std::shared_ptr<T> reinterpret_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
auto p = reinterpret_cast<typename std::shared_ptr<T>::element_type*>(r.get());
return std::shared_ptr<T>{r, p};
}

Example

#include <iostream>
#include <memory>

class Base
{
public:
int a;
virtual void f() const { std::cout << "I am base!\n";}
virtual ~Base(){}
};

class Derived : public Base
{
public:
void f() const override { std::cout << "I am derived!\n"; }
~Derived(){}
};

int main()
{
auto basePtr = std::make_shared<Base>();
std::cout << "Base pointer says: ";
basePtr->f();

auto derivedPtr = std::make_shared<Derived>();
std::cout << "Derived pointer says: ";
derivedPtr->f();

// static_pointer_cast to go up class hierarchy
basePtr = std::static_pointer_cast<Base>(derivedPtr);
std::cout << "Base pointer to derived says: ";
basePtr->f();

// dynamic_pointer_cast to go down/across class hierarchy
auto downcastedPtr = std::dynamic_pointer_cast<Derived>(basePtr);
if (downcastedPtr)
{
std::cout << "Downcasted pointer says: ";
downcastedPtr->f();
}

// All pointers to derived share ownership
std::cout << "Pointers to underlying derived: "
<< derivedPtr.use_count()
<< '\n';
}
Result
Base pointer says: I am base!
Derived pointer says: I am derived!
Base pointer to derived says: I am derived!
Downcasted pointer says: I am derived!
Pointers to underlying derived: 3

std::static_pointer_cast, std::dynamic_pointer_cast, std::const_pointer_cast, std::reinterpret_pointer_cast

Defined in header <memory>.

Declarations

// 1)
template< class T, class U >
std::shared_ptr<T> static_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 2)
template< class T, class U >
std::shared_ptr<T> static_pointer_cast( std::shared_ptr<U>&& r ) noexcept;
// 3)
template< class T, class U >
std::shared_ptr<T> dynamic_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 4)
template< class T, class U >
std::shared_ptr<T> dynamic_pointer_cast( std::shared_ptr<U>&& r ) noexcept;
// 5)
template< class T, class U >
std::shared_ptr<T> const_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 6)
template< class T, class U >
std::shared_ptr<T> const_pointer_cast( std::shared_ptr<U>&& r ) noexcept;
// 7)
template< class T, class U >
std::shared_ptr<T> reinterpret_pointer_cast( const std::shared_ptr<U>& r ) noexcept;
// 8)
template< class T, class U >
std::shared_ptr<T> reinterpret_pointer_cast( std::shared_ptr<U>&& r ) noexcept;

Creates a new instance of std::shared_ptr whose stored pointer is obtained from r's stored pointer using a cast expression.

If r is empty, so is the new shared_ptr (but its stored pointer is not necessarily null). Otherwise, the new shared_ptr will share ownership with the initial value of r, except that it is empty if the dynamic_cast performed by dynamic_pointer_cast returns a null pointer.

Let Y be typename std::shared_ptr<T>::element_type, then the resulting std::shared_ptr's stored pointer will be obtained by evaluating, respectively:

1-2) static_cast<Y*>(r.get())
3-4) dynamic_cast<Y*>(r.get()) (If the result of the dynamic_cast is a null pointer value, the returned shared_ptr will be empty.)
5-6) const_cast<Y*>(r.get())
7-8) reinterpret_cast<Y*>(r.get())

The behavior of these functions is undefined unless the corresponding cast from U* to T* is well formed:

1-2) The behavior is undefined unless static_cast<T*>((U*)nullptr) is well formed.
3-4) The behavior is undefined unless dynamic_cast<T*>((U*)nullptr) is well formed.
5-6) The behavior is undefined unless const_cast<T*>((U*)nullptr) is well formed.
7-8) The behavior is undefined unless reinterpret_cast<T*>((U*)nullptr) is well formed.

After calling the rvalue overloads (2,4,6,8), r is empty and r.get() == nullptr, except that r is not modified for dynamic_pointer_cast (4) if the dynamic_cast fails (Since C++20).

Parameters

r - pointer to convert

Notes

The expressions std::shared_ptr<T>(static_cast<T*>(r.get())), std::shared_ptr<T>(dynamic_cast<T*>(r.get()))
and std::shared_ptr<T>(const_cast<T*>(r.get())) might seem to have the same effect, but they all will likely result in undefined behavior, attempting to delete the same object twice!

Possible implementation

static_pointer_cast

    template< class T, class U >
std::shared_ptr<T> static_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
auto p = static_cast<typename std::shared_ptr<T>::element_type*>(r.get());
return std::shared_ptr<T>{r, p};
}

dynamic_pointer_cast

template< class T, class U >
std::shared_ptr<T> dynamic_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
if (auto p = dynamic_cast<typename std::shared_ptr<T>::element_type*>(r.get()))
return std::shared_ptr<T>{r, p};
else
return std::shared_ptr<T>{};
}

const_pointer_cast

template< class T, class U >
std::shared_ptr<T> const_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
auto p = const_cast<typename std::shared_ptr<T>::element_type*>(r.get());
return std::shared_ptr<T>{r, p};
}

reinterpret_pointer_cast

template< class T, class U >
std::shared_ptr<T> reinterpret_pointer_cast( const std::shared_ptr<U>& r ) noexcept
{
auto p = reinterpret_cast<typename std::shared_ptr<T>::element_type*>(r.get());
return std::shared_ptr<T>{r, p};
}

Example

#include <iostream>
#include <memory>

class Base
{
public:
int a;
virtual void f() const { std::cout << "I am base!\n";}
virtual ~Base(){}
};

class Derived : public Base
{
public:
void f() const override { std::cout << "I am derived!\n"; }
~Derived(){}
};

int main()
{
auto basePtr = std::make_shared<Base>();
std::cout << "Base pointer says: ";
basePtr->f();

auto derivedPtr = std::make_shared<Derived>();
std::cout << "Derived pointer says: ";
derivedPtr->f();

// static_pointer_cast to go up class hierarchy
basePtr = std::static_pointer_cast<Base>(derivedPtr);
std::cout << "Base pointer to derived says: ";
basePtr->f();

// dynamic_pointer_cast to go down/across class hierarchy
auto downcastedPtr = std::dynamic_pointer_cast<Derived>(basePtr);
if (downcastedPtr)
{
std::cout << "Downcasted pointer says: ";
downcastedPtr->f();
}

// All pointers to derived share ownership
std::cout << "Pointers to underlying derived: "
<< derivedPtr.use_count()
<< '\n';
}
Result
Base pointer says: I am base!
Derived pointer says: I am derived!
Base pointer to derived says: I am derived!
Downcasted pointer says: I am derived!
Pointers to underlying derived: 3